

Adobe Systems

ColdFusion (2018
release) – Public
Beta Help
Documentation

This is a pre-release documentation and does not constitute final documentation relating to the product it is
distributed with.

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under copyright law
even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not
be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no
responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this
guide.

Please remember that existing artwork or images that you may want to include in your project may be protected
under copyright law. The unauthorized incorporation of such material into your new work could be a violation of the
rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to
refer to any actual organization.

Adobe, the Adobe logo, Adobe Content Server, Adobe Digital Editions, and Adobe PDF are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States and/or other countries. Java is a trademark or
registered trademark of Sun Microsystems, Inc. in the United States and other countries. Linux is the registered
trademark of Linus Torvalds in the U.S. and other countries. Microsoft, Windows and Windows Server are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Macintosh
and Mac OS are trademarks of Apple Inc., registered in the U.S. and other countries. All other trademarks are the
property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is
defined at 48 C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software
Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48
C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and
Commercial Computer Software Documentation are being licensed to U.S. Government end users (a) only as
Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and
conditions herein. Unpublished-rights reserved under the copyright laws of the United States.

For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws
including, if appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam
Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act
of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The
affirmative action clause and regulations contained in the preceding sentence shall be incorporated by
reference.

ColdFusion Administrator has a new User Interface
There is a new login page.

When you sign in successfully, you see a refurbished User Interface.

When you click any category, you can see all the options organized in the form of tabs.

In the UI, we have also enhanced the search experience. Click in the top-right corner of the
screen. Enter your search string. You can see recommendations based on the search string. Choose the
required option from the search list.

Performance Monitoring Toolset
In the 2018 release of ColdFusion, we have introduced a comprehensive application monitoring solution
called Performance Monitoring Toolset.

The 2018 release of Adobe ColdFusion Enterprise and Standard editions now offer you the Performance
Monitoring Toolset, an all-new solution that ensure that your applications are as optimized as the high-
performing ColdFusion engine.

Performance Monitoring Toolset is an application monitoring suite to enable developers gain insight on
how applications perform at run time.

Performance Monitoring Toolset:

• Captures and persists data in real-time for business transactions and helps resolves issues effectively
• Provides Dynamic Server Index, which includes metrics for JVM, GC, CPU usage, and so on
• Analyzes thread dumps and helps users in identifying bottlenecks
• Supports clustered environments

PMT also:

• Continuously monitors applications, servers and databases to ensure increased stability.
• Identifies and sends out alerts before they impact critical processes
• Safeguards applications from common performance pitfalls.

For more information, see the documentation of Performance Monitoring Toolset.

Language enhancements
NULL support
CFML did not support NULL values. ColdFusion converts a null value to an empty string. In operations such
as SerializeJSON and CFquery, Null values are automatically converted into empty strings, a non-null value.

While the code below runs as expected:

<cfscript>
 myvar=""; // empty string
 writeOutput(isNULL(myvar)); // returns NO
</cfscript>

The code below throws an exception:

<cfscript>
 myvar=NULL; // value is NULL
 writeOutput(isNULL(myvar)); // returns Variable NULL is undefined
</cfscript>

Although, you could always assign NULL to a variable through JavaCast function. For example,

<cfscript>
 myvar=JavaCast("null",0);
 writeOutput(isNULL(myvar)); // returns TRUE
</cfscript>

ColdFusion (2018 release) now supports Null values. Null support is turned off by default. To enable Null
support, follow the following steps:

1. Enable NULL support in the ColdFusion Administrator for all global CF applications. In Server
Settings > Settings, select the check-box Enable Null Support. After the change, the code below
works as expected:

<cfscript>
 myvar=NULL;
 writeOutput(isNull(myvar)); // returns TRUE

</cfscript>

2. You can enable Null support at the application level. There is a new variable, enableNULLSupport,
which you can use to add NULL support in your project. For example, the code below adds NULL
support in Application.cfc:

component{
 this.enableNULLSupport=true;
}

Null strings are different from null values. When you dump a null value using either writeDump or
<cfdump>, the null value appears as [null]. For example,

For example, with the enableNULLSupport flag set to true, create a query as shown below, with null values
and null strings.

<cfscript>
 myquery=querynew("id,name","integer,varchar",[[null,"hello"],[1,"null"],[null,
"null"]]);
 writedump(myquery);
 writedump(format="text",var=#myquery#);
</cfscript>

When you dump the values, you can see that null values are represented as [null].

Note: With Null support enabled, isNull returns a YES / NO when variables are passed, and throws an
exception if a non-existent variable name is passed.

Closures in ColdFusion tags
In previous versions of ColdFusion, you could use closures in script syntax, but not in tags. Supporting
closures in Tags would mean enabling everything that is valid within a CFScript body to be embedded
inside a CFTag.

For example, the closure function in arraySort returns results as expected.

<cfscript>
 // Define an array of structs
 myArray = [
 {name="Thomas", age="22"},
 {name="Zaza", age="36"},
 {name="Novak", age="136"},

{name="Marin", age="361"},
 {name="Rafa", age="03"},
 {name="$bl0091@", age="-23"}

];

// Define a closure function that sorts the names in the array of structs
callback=function (e1, e2){
 return compare(e1.name, e2.name);
}

// Use the closure function
arraySort(myArray,callback);

// Display the sorted array of structs
WriteDump(myArray);

</cfscript>

On the other hand, the snippet below always returns an exception:

<cfset myClosure= function() {…}>

In this release of ColdFusion, you can use closure functions in tags. For example,

<cfset myarray=[
 {name="Thomas", age="22"},
 {name="Zaza", age="36"},
 {name="Novak", age="136"},
 {name="Marin", age="361"},
 {name="Rafa", age="3"},
 {name="$bl0091@", age="-23"}
]>
<!--- define closure function --->
<cfset closure=function (e1,e2){
 return compare(e1.name,e2.name);
}>
<cfset ar = arraySort(myarray,closure)>
<cfdump var="#myarray#">

Asynchronous programming
In this release of ColdFusion, we have added support for asynchronous programming via Future. A Future
is an eventual result of an asynchronous operation.

Asynchronous programming is useful when you want to reduce the average response time of an
application. You can use asynchronous programming to offload IO, database intensive tasks. Also use
asynchronous programming to improve the responsiveness of a UI.

Some of the benefits of asynchronous programming are:

• Near real time processing
• Easy to distribute tasks
• Uses its own worker threads
• Dynamically configurable thread pool (Admin Console)
• On-demand thread pool creation

Example

When salary is credited to our bank accounts, we pay various bills like credit cards, mortgage, utilities, and
so on. The payments are dependent on salary or in this context, chained to salary.

<cfscript>

 getAccountBalance = function(){
 var balance = 120000;
 return balance;
 }

 function payCreditCardBill(accountBalance){
 var ccBill = 1890;
 return accountBalance-ccBill;
 }

 payEMIs = function(accountBalance){
 var mortgageEMI = 1000;
 var carLeaseEMI = 750;
 var healthInsuranceEMI = 250;

 return accountBalance-(mortgageEMI+carLeaseEMI+healthInsuranceEMI);
 }

 miscellenousExpenses = function(accountBalance){
 var shopping = 1500;
 var clubExpense =1000;
 var casinoExpense = 2000;
 return accountBalance-(shopping+clubExpense+casinoExpense);
 }

 checkBalance = function(accountBalance){
 while(accountBalance > 5000){
 accountBalance = miscellenousExpenses(accountBalance);
 writeOutput("checkBalance = " & accountBalance & "
");

 }
 if(accountBalance < 5000)
 throw (message="Account balance below threshold!!!",
type="info");
 }

 errorHandler = function(error){
 if(error.message contains "Account balance below threshold!"){
 return "You have reached your spending limit!";
 }
 }

 future = runAsync(getAccountBalance).then(payCreditCardBill).then(payEMIs).
 then(miscellenousExpenses).then(checkBalance).error(errorHandler);

 writeOutput(future.get());

</cfscript>

You can also use closures with runAsync function.

For example,

<cfscript>

 future = runAsync(function(){return "I am invoked from
RunAsync directly!";});

</cfscript>

Methods available with runAsync are:

• cancel();
• error(callback, timeout);
• error(callback);
• get();
• get(timeout);
• isCancelled();
• isDone();
• then(callback);
• then(callback, timeout);

Note:

• UDF Method would be either a closure reference, closure, or a User Defined Method

For example,

<cfscript>
 function add(){
 return 10+20;

 }
 Future = runAsync(add);
 writeDump(Future.get());
</cfscript>

Here add() is a User Defined Method and has to be passed to runAsync as “add” and not “add()”.

Empty future

An empty future is an object, which can be explicitly marked as complete with a result value. It can be
used in producer/consumer scenarios.

For example,

<cfscript>
 p = runAsync(); // empty future
 p.complete(10);
 writeOutput(p.get()); // displays 10
</cfscript>

The methods available on an empty Future are:

• cancel()
• get()
• isCancelled()
• isDone()
• complete(value)

Executor Pool Configuration
In the Server Settings section in the Administrator, we have added Executor Pool Configuration, which
enables you to specify values for:

• Core pool size: Core pool size is the minimum number of worker threads to keep alive. The value
should be less than the value specified in Maximum Pool Size. The default value sis 25.

• Maximum pool size: Maximum number of threads that can ever be available in the pool. The default
value is 50.

• Keep alive time: Timeout in milliseconds for idle threads waiting for work. Threads use this timeout
when there are more than the corePoolSize present in the pool. The default value is 2000 ms.

These settings enable you to finetune your async executor according to your requirements. Also, these
property changes take effect without any server restart.

We have also added the following Admin APIs to support the properties mentioned above. These APIs are
a part of runtime.cfc.

In this release, to support the pool configuration settings, we have also added three new properties to the
API, getRuntimeProperty(required propertyName). They are:

• corePoolSize
• maxPoolSize
• keepAliveTime

For example,

<cfscript>
 // Login is always required.
 adminObj = createObject("component","cfide.adminapi.administrator");
 adminObj.login("admin");
 runtimeObj=createObject("component","cfide.adminapi.runtime");
 corePool=runtimeObj.getRuntimeProperty("corePoolSize");
 writeOutput("core pool size is: " & corePool & "
");
 maxPool=runtimeObj.getRuntimeProperty("maxPoolSize");
 writeOutput("max pool size is: " & maxPool & "
");
 keepAlive=runtimeObj.getruntimeProperty("keepAliveTime");
 writeOutput("keep alive time is: " & keepAlive & "
");
</cfscript>

Data type preservation
ColdFusion is typeless and does not evaluate or preserve the type information at the time of code
generation. At runtime, ColdFusion tries its best to infer the datatype, which may cause an unexpected
behavior in some cases. For example, at the time of JSON serialization, ColdFusion attempts at converting
a string to a number, if the number is given in double quotes. If the attempt is successful, then the given
data is treated as number irrespective of whether you wanted it to be a number or not.

For example, in the previous version of ColdFusion, if the data type of column was not defined, CF used to
serialize everything as a string. However, with the data type preservation functionality we infer the data
type while serializing the data even though the data type was not defined. In the snippet below:

<cfscript>
 myQuery = queryNew("id,name,ctype","",
 [
 {id=1,name="1",ctype=true},
 {id=2,name="Two",ctype=false},
 {id=3,name="3",ctype="true"},
 {id="4",name="4",ctype="false"}
]);
 writeOutput (SerializeJSON(myQuery));
</cfscript>

New output:

{"COLUMNS":["ID","NAME","CTYPE"],"DATA":[[1,"1",true],[2,"Two",false],[3,"3","true"],[
"4","4","false"]]}

Old output:

{"COLUMNS":["ID","NAME","CTYPE"],"DATA":[["1","1","true"],["2","Two","false"],["3","
3","true"],["4","4","false"]]}

The 2018 release of ColdFusion infers the data type of a variable at compile type. This release has enabled
this feature by default. However, these is a new flag introduced to disable this feature and fallback on the
previous behavior. You can add this flag to the jvm.config file:

-Dcoldfusion.literal.preservetype=”false/true”

For the flag to work, ensure the following:

• Restart ColdFusion after enabling/disabling this flag
• Remove all class files from the <cf_install_root>/<instance_name>/wwwroot/WEB-INF/cfclasses or

re-compile the CFM template

There are a few known issues while interacting with the external systems like SharePoint, dotnet, web
services, etc. For more information, see the Known Issues document.

Object Oriented Programming enhancements
Abstract components and methods
An abstract component can have abstract method without body and can also have methods with
implementation.

Use the abstract keyword to create an abstract component and method. In ColdFusion, you cannot
instantiate an abstract component. An abstract component is mostly used to provide base for sub-
components. The first concrete component should have the implementation of all the abstract methods
in its inheritance hierarchy.

Note: A concrete component cannot have abstract methods.

To declare an abstract component,

myAbstractClass.cfc

abstract component {

 // abstract methods

 // concrete methods

}

That is all there is to declaring an abstract component in ColdFusion. Now you cannot create instances of
myAbstractClass. Thus, the following code is NOT valid:

myClassInstance=new myAbstractComponent();

Here is an example of using abstract components in ColdFusion.

Shape.cfc

abstract component Shape{
 abstract function draw();
}

Square.cfc

component Square extends="Shape" {
 function draw() {
 writeoutput("Inside Square::draw() method.
");
 }
}

ShapeFactory.cfc

component ShapeFactory extends="AbstractFactory" {

 Shape function getShape(String shapeType){

 if(shapeType EQ "RECTANGLE"){
 return new Rectangle();

 }else if(shapeType EQ "SQUARE"){
 return new Square();

 }else
 return "not defined";
 }
}

Rectangle.cfc

component Rectangle extends="Shape" {
 function draw() {
 writeoutput("Inside Rectangle::draw() method.
");
 }
}

AbstractFactory.cfc

abstract component AbstractFactory {
 abstract Shape function getShape(String shape) ;
}

FactoryProducer.cfc

component FactoryProducer {
 AbstractFactory function getFactory(String choice){
 if(choice eq "SHAPE"){
 return new ShapeFactory();

 }

 }
}

index.cfm

<cfscript>
 //get shape factory
 shapeFactory = new FactoryProducer().getFactory("SHAPE");
 //get an object of Shape Rectangle
 shape2 = new shapeFactory().getShape("RECTANGLE");
 //call draw method of Shape Rectangle
 shape2.draw();
 //get an object of Shape Square
 shape3 = new shapeFactory().getShape("SQUARE");
 //call draw method of Shape Square
 shape3.draw();
</cfscript>

Final component, method, and variable
In ColdFusion, inheritance is a highly useful feature. But at times, a component must not be extended by
other classes to prevent data security breaches. For such situations, we have the final keyword.

In the 2018 release of ColdFusion, we have introduced the following:

• Final component
• Final method
• Final variable

Final variable

Final variable are constants. Use the final keyword when declaring a variable. You cannot change the
value of a final variable once you initialize it. For example,

component{
 final max=100;

 function mymethod(){
 //max=100;
 writeoutput("final variable is: " & max);
 }
}

Create an index.cfm, instantiate the component, and call the method defined in the component. If you
change the value of max in the method, you see an exception. The following snippet also produces an
exception.

component{
 final max;
 // constructor

 function mymethod(){
 max=50;
 writeoutput("final variable is: " & max);
 }
}

Final component

You cannot extend a final component and override a final method. A final component, however, can
extend other components.

To define a final component, see the example below:

final component{

 // define methods

}

To define a final method, use the specifier before the final keyword and the return type. For example,

public final void function myMethod() {

 // method body

}

A final component helps secure your data. Hackers often create sub-components of a component and
replace their components for the original component. The sub-component looks like the component, and
may perform potentially malicious operation, which would compromise the entire application. To prevent
such subversion, declare your component as final and prevent the creation of any sub-component. For
example,

A.cfc

final component {

}

The code below produces an exception:

B.cfc

component extends=”A” {

}

Final method

A method with a final keyword cannot be overridden. This allows you to create functionality that cannot
be changed by sub-components. For examples,

Test.cfc

component {
 // final method and cannot be overridden
 public final void function display(){
 writeOutput("From super class, final display() method");
 }
 // concrete method
 public void function show(){
 writeOutput("From super class, non-final show() method");
 }
}

Demo.cfc

component extends="Test"{
 //public void function display(){}
 public void function show()
 {
 writeOutput("From subclass show() method");
 }
}

In Demo.cfc, uncommenting the above line produces an exception, since you cannot override a Final
method. You can however override a non-final method, as shown in the code above.

main.cfm

<cfscript>
 d1=new Demo();
 d1.display();
 d1.show();
</cfscript>

Produces the output,

From super class, final display() method

From subclass show() method

Default functions in interfaces
This feature enables you to declare a function in an interface, and not just the signature. While extending
the interface, developers can choose to either override or reuse the default implementation.

Default Functions enables extending the interfaces without breaking old applications.

For example, create an interface, I.cfc, that defines a function returnsany, which returns an object of any
type. Use the keyword "default", while defining such functions.

interface {
 public default any function returnsany(any obj)
 {
 return obj;
 }
}

Create a cfc, comp.cfc, that implements the interface, I.cfc.

component implements="I"
{

}

Now, create on object that returns a string.

<cfscript>
 myobj=new Comp();
 writeOutput(myobj.returnsany("hello world"));
</cfscript>

Similarly, create a cfm that returns an array object.

<cfscript>
 myobj=new Comp();
 writeDump(myobj.returnsany(arrayNew<String>(1)));
</cfscript>

Covariance
Covariance is the relationship between types and subtypes. In ColdFusion (2018 release), Covariance is
supported for return types in overriding a method.

In ColdFusion (2018 release), a return type is covariant in the component implementing the interface. The
example below shows how you can leverage covariance.

The argument name is not compared during interface implementation, i.e, if the interface function takes
argument name as x , the implementing function in the component can have any argument name.

1. Define an interface, Animal.cfc.

interface {
 IPerson function returnsAny();
 void function acceptAny(required string x, required numeric y, required
numeric z);
}

2. Define an interface, IPerson.cfc.

interface {
}

3. Define an interface, CPerson.cfc, that implements the interface defined in I.cfc.

interface extends="IPerson"{
}

4. Define an interface, Person.cfc, that extends CPerson, and defines the properties of the object
defined in ReturnsString.cfc.

component displayName="Person" implements="CPerson"{
this.firstName="John";
this.lastName="Doe";

}

5. Define the functions, returnsAny and acceptAny, in ReturnsString.cfc.

 component implements="I"{

 Person function returnsAny(){
 obj1 = createObject("component", "Person");
 return obj1;
}

 void function acceptAny(required string a,required numeric b,required numeric
c)
{
 WriteOutput(a);
 WriteOutput(b);
 WriteOutput(c);
}

}

6. Finally, create an index.cfm, that calls the component, ReturnsString, and further invokes the
function, returnsAny.

<cfscript>
 writeDump(invoke("ReturnsString", "returnsAny"));
</cfscript>

Optional semicolon in cfscript
In this release, we have added support for making semicolons optional in cfscript. For example, the
snippet below does not use any semicolon at the end of a statement.

<cfscript>
 animals = ['cat','dog','fish','bison']
 lastAnimal=animals.last()
 writeOutput("The last element of the array is: " & lastAnimal)
</cfscript>

A semicolon is optional in for and do-while statements. For example,

<cfscript>
 for(i=1;i<9;i++){
 for(j=1;j<=i;j++)
 writeoutput("*")
 writeoutput("
")
 }
</cfscript>

A semicolon is optional in generic syntax for ColdFusion tags. For example,

<cfscript>
 cfhttp(url="http://localhost:8500", timeout="60")
</cfscript>

A semicolon is also optional in script-based components. For example,

component{
 function myfunc(){
 writeoutput("Optional Semi Colon Example")
 }
}

In closures in tags,

A semi-colon is also optional while defining the body of closure functions in tags. For example,

<cfset closureFunc1=function(){
 return true
 }>

Named parameters
In the 2018 release of ColdFusion, we have introduced named parameters for the functions, that are listed
here.

Array slicing
In ColdFusion (2018 release), to slice an array means extracting elements from an array depending on a
start and stop. Typically, you specify a first index, a last index, and an optional step.

For example, in the following script,

<cfscript>
 a=[1,2,3,4,5,6,7,8]
 writedump(a[1:6])
</cfscript>

You see the following output:

Similarly,

<cfscript>
 a=[1,2,3,4,5,6,7,8]
 writedump(a[1:6:2]) // In steps of 2
</cfscript>

http://cfdownload.adobe.com/pub/adobe/coldfusion/2018/publicBeta/NamedParametersColdFusion2018.pdf

Also,

<cfscript>
 a=[1,2,3,4,5,6,7,8]
 writedump(a[5:]) // from index 5 till the end of the array
</cfscript>

<cfscript>
 a=[1,2,3,4,5,6,7,8]
 writedump(a[:3]) // All elements till index 3, exclusive of index 3
</cfscript>

<cfscript>
 a=[1,2,3,4,5,6,7,8]
 writedump(a[:]) // returns the entire array
</cfscript>

Using negative indices,

<cfscript>
 a=[1,2,3,4,5,6,7,8]
 writedump(a[:-5]) // Returns all elements from the array, except the last 5
elements
</cfscript>

Similarly,

<cfscript>
 a=[1,2,3,4,5,6,7,8]
 writedump(a[:-2:2])
</cfscript>

In case of strings,

<cfscript>
 values = ["Aa","Bb","Cc","Dd","Ee"]
 odds = values[::2]
 writedump(odds)
</cfscript>

Member functions
String literals
In this release of ColdFusion, we have added support for string literals. For example,

The following snippet also produces same output olleh.

<cfscript>
 str="hello";
 writeoutput(str.reverse());
</cfscript>

Chaining more than one method to a string literals is also possible. For example,

<cfscript>
 writeOutput("ABCDEFGHIJ".substring(1,7).substring(2,5).lCase().len());
</cfscript>

Numeric member functions
In this release, we have introduced equivalent member functions for the following numeric functions:

• someVar.abs()
• someVar.aCos()
• someVar.aSin()
• someVar.atn()
• someVar.bitAnd(number2)
• someVar.bitMaskClear(start, length)
• someVar.bitMaskRead(start, length)
• someVar.bitMaskSet(mask, start, length)
• someVar.bitNot()
• someVar.bitOr(number2)
• someVar.bitSHLN(count)
• someVar.bitXor(number2)
• someVar.ceiling()
• someVar.cos()
• someVar.decrementValue()
• someVar.exp()
• someVar.fix()
• someVar.floor()
• someVar.formatBaseN(radix)
• someVar.incrementValue()
• * someVar.inputbasen() – does not work as expected in this release
• someVar.log()
• someVar.log10()
• someVar.max(number2)
• someVar.min(number2)
• someVar.round()
• someVar.sgn()
• someVar.sin()

• someVar.sqr()
• someVar.tan()
• someVar.bitSHRN(count)
• someVar.precisionEvaluate()
• someVar.randomize([algorithm])
• someVar.randRange(number2[, algorithm])

For example,

<cfscript>
 x=10;
 whichIsBigger=x.Max(10.01);
 writeOutput(whichIsBigger); // displays 10.01
</cfscript>

Also,

<cfscript>
 a=0.3;
 writeoutput(a.acos()); // displays 1.26610367278
</cfscript>

Typed collections
This release of ColdFusion (2018 release) supports declaring arrays and structs with a set of related types.

In previous versions of ColdFusion, you could create an array with the following code:

<cfscript>
 arr=arrayNew() // or arr=[];
 arr=["hello","world"];
 writeDump(arr);
</cfscript>

In this release, using type, you can rewrite the above as:

<cfscript>
 arr=arrayNew['String'](1);
 arr.add("hello");
 arr.add("world");
 writeDump(arr);
</cfscript>

The output is an array of strings.

Note: The type declaration allows you to insert data of only the declared type.

Typed arrays include the following:

• Support for inheritance while inserting CFCs
• Support for typed arrays in method argument (numeric function

getMax(numeric[] numbers))
• Support for typed arrays in method return type (Student[] function

getStudents(numeric[] studentIds))

In typed arrays, the following are the datatypes supported:

• String
• Numeric
• Boolean
• Date / Datetime
• Array
• Struct
• Query
• Component
• CFC (By Name) – Allows extended components
• Binary
• Function

New operator support using name-spaces for java, com and cfc
In this release, we have added support for new operator/syntax for com, component, CORBA, Java,. Net,
webservice. For examples,

o obj1 = new java("java.lang.String");
o m = new component("employee ");

For example, in the following cfcs (using Super keyword):

Employee.cfc

component {
 public numeric function getPaid() {
 var salary=40*20;
 return salary;
 }
}

Manager.cfc

component extends="employee"{
 public numeric function getPaid(){
 var salary=1.5*Super.getPaid();
 return salary;
 }
}

President.cfc

component extends="manager"{
 public numeric function getpaid(){
 var salary=1.5*Super.getPaid();
 return salary;
 }
}

Payday.cfm

<cfscript>
 empObj=new component:employee();
 manObj=new component:manager();
 presObj=new component:president();
 writeOutput("Employee earns: " & empObj.getPaid() & "
");
 writeOutput("Manager earns: " & manObj.getPaid() & "
");
 writeOutput("President earns: " & presObj.getPaid() & "
");
</cfscript>

Chaining of member functions
In this release, you can chain member functions together to produce a desired output.

The following member functions will return array or struct objects instead of Boolean values after this
release:

• arrayObj.Clear()
• arrayObj.DeleteAt()
• arrayObj.Delete()
• arrayObj.DeleteNoCase()
• arrayObj.InsertAt()
• arrayObj.Prepend()
• arrayObj.Resize()
• arrayObj.Set()
• arrayObj.Sort()
• arrayObj.Swap()
• structObj.Insert()
• structObj.Update()

Example 1,

<cfscript>
 myarray=ArrayNew(1);
 new_arr= myarray.clear().Resize(10).set(1,10,"blah");
 writedump(new_arr);
</cfscript>

Example 2,

<cfscript>
 ordered_struct=["key1":"val1","key2":"val2"]
 unordered_struct={"key3":"val3","key4":"val4"}
 new_struct=unordered_struct.append(ordered_struct).update("key4","updated
val4").insert("key5","inserted val5");
 writedump(new_struct);
 writedump(unordered_struct);
</cfscript>

Example 3,

<cfscript>
 myResult=QueryExecute(("SELECT * FROM ORDERS WHERE ORDERID BETWEEN :low AND
:high"),{low=1,high=23},
{datasource="cfartgallery"});

 // chaining methods
 a=myResult.deleteColumn("PHONE").filter(function(item){
 return item.STATE=="CO" || item.STATE=="CA";
 }).valueArray("TOTAL");
 WriteDump(a);

 // use reduce function to calculate sum of all prices

 red=a.reduce(function(prev,next){
 return prev+next; // sum of all prices
 },0);
 writeoutput(red);
</cfscript>

Simplified date format functions
To make date member functions consistent and convenient, we have introduced a new member function
dateObj.format(), which is equivalent to the member function dateObj.dateTimeFormat().

Syntax

dateObj.format(date,[mask,timezone])

For example,

<cfscript>
 todayDateTime = Now()
 writeOutput("Today's date and time are" & #todayDateTime# & "
")
 writeoutput("Using .Format(), we can display that date and time in different
ways: ")
 writeoutput(#todayDateTime.Format()#)
 writeoutput(#todayDateTime.Format("yyyy.MM.dd G 'at' HH:nn:ss z")#)
 writeoutput(#todayDateTime.Format("EEE, MMM d,yy")#)
 writeoutput(#todayDateTime.Format("h:nn a")#)
 writeoutput(#todayDateTime.Format("hh 'o''clock' a, zzzz")#)
 writeoutput(#todayDateTime.Format("K:nn a, z")#)
 writeoutput(#todayDateTime.Format("yyyyy.MMMMM.dd GGG hh:nn aaa")#)
 writeoutput(#todayDateTime.Format("EEE, d MMM yyyy HH:nn:ss Z")#)
 writeoutput(#todayDateTime.Format("yyMMddHHnnssZ", "GMT")#)
</cfscript>

ArrayFirst and ArrayLast functions

There are two new array functions in this release. They are:

• ArrayFirst
• ArrayLast

Member functions for the above also exist as array.First() and array.Last() respectively. For example,
animals.Last() returns the last element in the animals array.

ArrayFirst

Description
Gets the first element from an array.

Returns
The first array element.

Syntax
ArrayFirst(Obj array)

History
New in ColdFusion Aether

Parameters

Parameter Req/Opt Description
Array Required The input array from which the

first element is to be displayed.

Example
<cfscript>
 animals = ['cat','dog','fish','bison'];
 firstAnimal=ArrayFirst(animals);
 writeOutput("The first element of the array is: " & firstAnimal);
</cfscript>

ArrayLast

Description
Gets the last element from an array.

Returns
The last array element.

Syntax
ArrayLast(Obj array)

History
New in ColdFusion Aether

Parameters

Parameter Req/Opt Description
Array Required The input array from which the

last element is to be displayed.

Example
<cfscript>
 animals = ['cat','dog','fish','bison'];
 lastAnimal=ArrayLast(animals);
 writeOutput("The last element of the array is: " & lastAnimal);
</cfscript>

Negative Indices support for Arrays
In this release of ColdFusion, we have provided support for negative indices in arrays.

Support for indices from the end in an array. For example,

<cfscript>
 animals = ['cat', 'dog', 'fish', 'bison'];
 writeOutput(animals[-1]); //gets the last element
 writeOutput(animals[-2]); //gets the last but one element
</cfscript>

QueryDeleteColumn

Description

Removes a column from a query object.

Returns

Modified query object after the deletion of the specified column.

Syntax

QueryDeleteColumn(Query queryObject, String columnName)

History

New in ColdFusion Aether

Parameters

Parameter Required/Optional Description
queryObject Required The query object in which a column is to

be deleted.
columnName Required The name of the column to be deleted.

Example

<cfscript>
 myResult=QueryExecute(("SELECT * FROM EMPLOYEES WHERE EMP_ID BETWEEN :low AND
:high"),{low=4,high=14},
{datasource="cfdocexamples"});
 writeOutput("Original query object" & "
");
 WriteDump(myResult);
 // delete column
 result=myResult.deleteColumn("IM_ID");
 writeOutput("Deleting column IM_ID" & "
");
 WriteDump(result);
</cfscript>

QueryDeleteRow
Description

Deletes a row from the query object.

Returns

Boolean, which indicates whether the row is successfully deleted.

Syntax

QueryDeleteRow(Object queryObject, int rowNum)

History

New in ColdFusion (2018 release)

Parameters

Parameter Required/Optional Description
queryObject Required The query object in which a column is to

be deleted.
rowNum Required The row number corresponding to the

row to be deleted.

Example

<cfscript>
 myResult=QueryExecute(("SELECT * FROM EMPLOYEES WHERE EMP_ID BETWEEN :low AND
:high"),{low=4,high=14},
 {datasource="cfdocexamples"});
 writeOutput("Array before deleting any row" & "
");
 writeDump(myResult);
 writeOutput("Deleting row 2" & "
");
 myDeletedRow=QueryDeleteRow(myResult,2);
 // Display output after row deletion
 writeOutput("
" & myDeletedRow);
 writeOutput("
" & "Array after deleting the row" & "
");
 WriteDump(myResult);
</cfscript>

CLI- REPL
In the 2016 release of ColdFusion, we had introduced support for Command Line Interface. In this release,
we have introduced support for Read-Eval-Print-Loop (REPL). REPL, a shell, is an interactive programming
environment that takes single user inputs, evaluates them, and returns the result to the user. An REPL is like
command line shells.

Getting started with REPL
In the command-prompt mode, navigate to <CF_HOME>/cfusion/bin. Enter cf.bat and the REPL mode
displays.

To test if the REPL works as expected, assign a value to a variable, and display the variable, as shown
below:

To exit the REPL mode, enter q.

Note:

• REPL works even if the ColdFusion server is NOT up and running

• REPL only supports cfscript syntax, not tags

Support for Admin APIs
You can execute Admin APIs through CLI as well as in REPL mode. For example,

<cfscript>
createObject("component","cfide.adminapi.administrator").login("admin");
//instantiate caching object
myObj = createObject("component","cfide.adminapi.debugging");
//get all IP List
returnValue = myObj.getIPList();
//set IP
myObj.setIP("10.10.10.10");

https://helpx.adobe.com/coldfusion/2016/command-line-interface.html

myObj.setIP("22.22.22.22");
//get all IP List
returnValue = myObj.getIPList();
//delete IP
myObj.deleteIP("10.10.10.10");
myObj.deleteIP("22.22.22.22");
returnValue = myObj.getIPList();

</cfscript>

A CLI instance and the server share the same configuration files. Any admin settings changed from the CLI
are reflected in CLI immediately. The changes are also applied to the server. However, to reflect the changes
in the ColdFusion Administrator Pages, restart the server. Any changes to settings done from ColdFusion
administrator applies to CLI as well. Restart CLI, to reflect the changes.

REPL is more enhanced
To open the console in the REPL mode, run cf.bat/cf.sh without any arguments. If you open the console in
REPL mode, it does the job of CLI as well now. You can specify the path of a cfm in REPL mode and execute
it. Like CLI, this also handles both positional and named arguments to the cfm.

For example,

cf-cli>C:\ColdFusion\cfusion\wwwroot\run.cfm arg1 arg2

Executing cfms in REPL mode is much faster than running from CLI mode, there is no requirement for re-
initialization of services. There is null support and semicolon is optional at the end of the line. When a single
line is typed, it is evaluated and printed.

Support for multi-line statements
You can type in multiple lines in the REPL mode. A multi-line can be introduced in two ways:

1. Auto-detection of logical blocks

If you type function add(){ in the REPL mode and press Enter, it will automatically go to the next
line and waits for the next line of input in the console.

2. Adding ^ (caret)

Add ^ at the end of line, and if you hit Enter, it will go to the next line and waits for the next line of input.
You can use this when you have a line to type in which doesn’t have any logical block opening({ / ()

When the input line has any logical block opening, you need not type in ^. Use it when you don’t have it.

For example, in a line you just want to type in ‘function add()’ and ‘{‘ in the next line, you have to
type as the line as function add()^

When you want to exit from the multiline midway, you can type in ‘multilineexit’

For example,

cf-cli>x=1

1

cf-cli>if (x==1)^

...writeOutput("Hello ColdFusion")

Hello ColdFusion

Set Working directory

The working directory from where cf.bat is started to be treated as reference point for searching cfcs when
they are referred in REPL.

For example,

C:\apps\Adobe\ColdFusion\2018\express\cfusion\wwwroot\REPL\example>..\
..\..\bin\cf.bat

ColdFusion started in interactive mode. Type 'q' to quit.

cf-cli>

For more information, type help in the command-prompt for all REPL usage options.

REST enhancements
In the 2016 and earlier versions of ColdFusion, after developing a REST service, you had to log in to the
ColdFusion Administrator to register the REST application. Also, with every change in the app, you had to
re-register/refresh the REST app in the Administrator. In addition, there were issues in reporting and logging
of errors related to the CFCs.

The highlights of this release are as follows:

• Profile toggling “Enable Developer Profile” in CF Administrator

• REST Playground application to try out registered APIs

• Auto refresh of REST services (if trusted cache is off)

• Language changes (component as argument, lifecycle methods)

• Easy error tracking and debugging

• PATCH support

• Custom REST path

• Under development/qa- JSON field projection

• Auto register the REST APIs (by accessing URL)

Enabling Developer Profile option
To use the REST Playground, you must enable the option Developer Profile, while installing ColdFusion.
Also, after installation, verify that the option Enable Developer Profile is selected in Debugging & Logging
> Developer Profile.

NOTE: It is recommended to enable Developer profile only during REST Services development.

Introducing REST Playground application
ColdFusion provides an application, REST Playground, located in the webroot, which you can launch in the
browser, and then traverse to the location of the application. It’s a client to test your ColdFusion REST
services.

To use the REST Playground app, the Developer Profile must be enabled.

In the browser bar, enter <host name>:<port>/REST Playground. In the REST playground, you
can add and manage your REST services, without involving the ColdFusion Administrator.

Note:

Since REST Playground application is not meant for production, the application is accessible only through
internal server (not accessible through Web server).

REST Playground pulls the resources from the swagger docs and lists the resources. These are refreshed
when there is a change in the CFC method and the service is invoked.

A status code of 500 is sent to the client when there are any server runtime errors.

If there are any compile time errors, they are shown when trying to access the service, or when refreshing
the application (or even clicking on the application).

Sending the Response Status Code as 401 when the developer profile is disabled on the server when REST
Playground tries to access the services.

Auto refresh of REST CFCs
Any change to the REST CFCs are reflected immediately on REST request, similar to the behavior of any
cfm/cfc.

To reload the CFC or to load from cache is dependent on the server setting Trusted Cache (Server Settings
> Caching). The same applies to REST CFCs as well.

Note: If you enable the Developer Profile option, the Trusted Cache options gets disabled.

Adding an application in REST Playground
After you create a REST application, add the application through the REST Playground application. Launch
REST Playground (localhost:8500/restplay), and click +, as shown below:

After clicking the button, enter the details in the following dialog:

Application path (Required) The location of the REST-enabled CFC.
Host (Optional) Host name for the REST service. For example, localhost:8500.
Service Mapping (Optional) Identifier for the REST application when calling the service.
Set as default application
(Optional)

Set an application as default to exclude the name of the application
in the URL, when invoking the service. For a host, you can make
only one application as default.

When you click Register, your REST app features in the portal, as shown below:

Depending on your REST service, the REST actions are displayed in the application pod. When you add any
action, click the refresh button at the top, and the action displays.

Example: GET
To retrieve the details of a user, pass the user id in the URL, as shown below:

After clicking Send, you get the following response:

{
 "price": 13900,
 "id": 2,
 "name": "Michael"
}

Example: POST
Depending on the parameters defined, you can issue a POST request, as shown below:

You can see the parameters in the section Documentation.

If the parameters are defined to be passed as headers, then insert the parameters in the header section, as
shown below:

Click Send to insert the record in the database.

Language changes
Support for REST functions with component as argument

When the argument is component, the REST request body should be sending the corresponding JSON
object.

student.cfc

component hint="This is a student cfc"
{

 property name="name" type="string"
displayname="name" hint="name of student";
 property name="age" type="numeric" displayname="age" hint="age
of student";

}

restCompTest.cfc

component restpath=”student”{
remote any function setuserPost(student st) httpmethod="POST"
restpath="setStudent"
 {
 studentcomp.name = st.name;
 studentcomp.age = st.age;
 return studentcomp;
 }
}

REST functions

You need not add access="remote" in REST functions. It is assumed inherently for all the REST enabled
functions.

Support for onRESTRequest

Like OnCFCRequest, which is called on invoking CFC, onRESTRequest is introduced to be called on
invoking REST URL. From the URL corresponding CFC, Method & Arguments are derived and passed to the
function.

<cffunction name="onRESTRequest" returntype="any" output="true">

<cfargument type="string" name="cfcname" required=true>
 <cfargument type="string" name="method" required=true>
 <cfargument type="struct" name="args" required=true>

 <cflog text="onRESTRequest() Before">

 <cfinvoke component = "#cfcname#" method = "#method#"
argumentCollection = "#args#" returnVariable = "resultval">

 <cflog text="onRESTRequest() After">
 <cfreturn "#resultval#">
</cffunction>

Behavior of restSetResponse changed

In previous ColdFusion versions, the response set in restSetResponse(response) used to be
ignored if the return type was non-void.

In this release, the response set in restSetResponse(response) is always considered.

When the same function is used as normal function(non-REST), it sends the response set in the return
statement.

In case of a REST call, the response returned using the return statement is ignored.

Easy debugging and logging
Like all cfm/cfc error messages, you can see the full stack trace when there are errors. You can also see the
line number where there is an error.

Compile time errors are shown as html response with full stack trace of the error.

Support for PATCH verb
For PATCH support, there should be a GET resource with same resource path as PATCH resource. This is
required to fetch the corresponding object on which PATCH must be applied. The GET resource should
return the Object on which Patch must be applied, while PATCH resource Patches the value.

Both the operations are merged and the result is passed on the PATCH method as argument, where you
can control what you want to write in the function with the patched object.

Example of PATCH

component restpath="users" rest="true"
{
 import student;
 student = createobject("component","student");
 student.name = "Joe";
 student.age = 22;

 remote any function patchuser(struct x) httpmethod="PATCH"
restpath="patchuser"
 {
 //x is patched object
 return x;
 }

 remote any function patchuserget() httpmethod="GET"
restpath="patchuser"
 {
 return student;
 }
}

Patch to be posted in the format as follows:

 [

 {

 "op" : "replace",

 "path" : "/age",

 "value" : "40"

 }

]

JSON Field Projection
Using field projection, you have the option to receive a thinned response from the server. This is ideal when
you wouldn’t want to receive the entire JSON object in the response, but instead, would only want filtered
values. For example,

http://example.com/addresses/51234?select=region,streetAddress results in:

{
 "region" : "CA",
 "streetAddress" : "1234 Fake St.“,
}
NOTE: This feature is under active development, and may produce unexpected results.

To see a working example, create the following files:

EmployeeService.cfc

<cfcomponent restpath="employeeapp" >

 <cffunction name="getEmployee" returntype="Employee" restpath="{name}-{age}"
httpmethod="GET" description="retrieve employee" produces="application/json">
 <cfargument name="name" type="string" required="yes" restargsource="Path"/>
 <cfargument name="age" type="string" required="yes" restargsource="Path"/>

 <cfset myobj = CreateObject("component", "Employee")>

 <cfset myobj.name = name>
 <cfset myobj.age = age>
 <cfreturn myobj>

http://example.com/addresses/51234?select=region,streetAddress

 </cffunction>

</cfcomponent>

Employee .cfc

component
{
 property string name;
 property numeric age;
}

Application.cfc

component{
 this.name="empapp";
 this.restsettings.skipCFCWithError=false;
 this.restsettings.generateRestDoc=true;
}

In the REST Playground app, add the service, and try out the API, using the example, below:

http://localhost:8501/rest/jsonfieldproj/employeeapp/John-25 produces

{

 "NAME": "John",

 "AGE": 25

}

http://localhost:8501/rest/jsonfieldproj/employeeapp/John-25

Using JSON field filtering, you can use the filter, as shown below:

http://localhost:8501/rest/jsonfieldproj/employeeapp/John-25?select=name produces

{
 "name": "John"
}
Similarly,

http://localhost:8501/rest/jsonfieldproj/employeeapp/John-25?select=age produces

{
 "age": 25
}

Auto registering REST applications
To auto register a REST application, access the application by specifying the webroot path from the browser.

You require a REST-enabled cfc , Application.cfc, and any cfm page (say index.cfm) in a folder. When you
access the cfm page (from browser) , all the REST services in the folder and the sub folders gets registered.

The Application.cfc needs to have this.name and at least one of the this.restSettings.* (for
example, this.restSettings.restEnabled=true) variables .

http://localhost:8501/rest/jsonfieldproj/employeeapp/John-25?select=name
http://localhost:8501/rest/jsonfieldproj/employeeapp/John-25?select=age

Caching enhancements
In this release, ColdFusion adds caching support for engines, such as, Java Caching System (JCS), and
Memcached, apart from the default caching engine, Ehcache.

Changes in the Administrator settings
In the ColdFusion administrator, you can choose the engine from Server Settings > Caching.

For each option, there are some configuration changes you need to make.

Memcached
Memcached is a distributed caching solution for Java enterprise applications. A Memcached server can be
shared across multiple ColdFusion instances, or multiple Memcached servers can be configured with a
single ColdFusion instance.

To use Memcached, download Memcached, and run the server from the command line using the
command:

Memcached -p <port_number>

The Memcached server, picks up the default port 11211.

In the ColdFusion administrator, specify the Memcached server details in Server Settings > Caching.

You can also configure Memcached at the application level. There are two new application variables that
you need to use to declare the caching engine.

this.cache.engine: Specify the caching engine to be used. Choose from jcs or memcached or ehcache.

this.cache.configFile: Specify the configuration file for memcached. For example, the file can contain key-
value pairs of caching properties, as shown below:

maxElementsInMemory=5

eternal=false
timeToIdleSeconds=30
timeToLiveSeconds=5

You can also modify the settings via the Administrator (Server Settings > Caching), as shown below. The
interface is similar for other cache engines:

Application.cfc

component{
 this.name='appUsingMemcached';
 this.cache.engine='memcached';
 this.cache.configFile='memcachedconfig.properties';
 this.cache.applicationTimeout=createtimespan(0,0,0,5);
}

memcachedconfig.properties

maxElementsInMemory=5
eternal=false
timeToIdleSeconds=30
timeToLiveSeconds=10

cache_1.cfm

<cfscript>
 writeoutput(cacheGetEngineName()); // Returns the name of the cache engine
 writedump(cacheGetProperties()); // Returns the cache engine properties
</cfscript>

JCS
Java Caching System (JCS) is an open source caching engine released through the Apache Jakarta
subproject. JCS provides in-memory caching and algorithms for selectively removing objects from the
cache. It also offers more advanced features, such as, indexed disk caching and support for distributed
caches.

In this release of ColdFusion, we have provided in-built support for JCS.

To use JCS, choose the option in the ColdFusion administrator.

Like Memcached, you can also configure JCS at the application level as well. Use the new application
variables to set the cache engine and the caching properties file.

Application.cfc

component{
 this.name = "appSpecificCacheTest";
 this.cache.configfile = "jcsconfig.properties";
 this.cache.engine = 'jcs';
 this.applicationTimeout = createtimespan(0,0,0,5);
}

jcsconfig.properties

maxElementsInMemory=5
eternal=false
timeToIdleSeconds=30
timeToLiveSeconds=5

You can also modify the settings via the Administrator (Server Settings > Caching), as shown below:

cache_2.cfm

<cfscript>
 writeoutput(cachegetengineproperties().name); // Returns the name of the cache
engine

</cfscript>

Auxiliary cache support in JCS
You can use JCS to persist cache into a database, which can be accessed via multiple nodes. From the
ColdFusion administrator, add a data source for clustering JCS.

From the ColdFusion Administrator, click Server Settings > Caching. Choose the data source from the drop-
down.

When you save the changes, a table, JCS_STORE gets created in the selected datasource.

This example uses My SQL as auxiliary cache.

To support auxiliary cache in JCS, edit the file cache.ccf located in <coldfusion_install_dir>/cfusion/lib. Add
the following lines:

MYSQL disk cache used for flight options
jcs.auxiliary.MYSQL=org.apache.commons.jcs.auxiliary.disk.jdbc.JDBCDis
kCacheFactory
jcs.auxiliary.MYSQL.attributes=org.apache.commons.jcs.auxiliary.disk.j
dbc.JDBCDiskCacheAttributes
jcs.auxiliary.MYSQL.attributes.userName=<user name>
jcs.auxiliary.MYSQL.attributes.password=<password>
Make sure the datasource is the one in which JCS_STORE is created
via the Administrator
jcs.auxiliary.MYSQL.attributes.url=jdbc:mysql://localhost:3306/<dataso
urce>
jcs.auxiliary.MYSQL.attributes.driverClassName=com.mysql.jdbc.Driver
jcs.auxiliary.MYSQL.attributes.tableName=JCS_STORE
jcs.auxiliary.MYSQL.attributes.UseDiskShrinker=false

Also set jcs.default = MYYSQL in cache.ccf.
Restart ColdFusion.
The JDBC disk cache uses a relational database, such as MySQL, as a persistent data store. The cache
elements are serialized and written into a BLOB.

Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database and cache. It
supports data structures such as strings, hashes, lists, sets, and so on.

To use Redis, download Redis, and run the server from the command line using the command:

redis-server

The Redis server picks up the default port 6379.

Redis is distributed. In a clustered environment, all nodes can communicate with the same Redis node.

In the ColdFusion administrator, specify the Redis server details in Server Settings > Caching.

You can also configure Redis at the application level. There are two new application variables that you
need to use to declare the caching engine.

this.cache.engine: Specify the caching engine to be used. Choose from jcs, redis, memcached or
ehcache.

this.cache.configFile: Specify the configuration file for redis. For example, the file can contain key-value
pairs of caching properties, as shown below:

 maxElementsInMemory=5
 eternal=false
 timeToIdleSeconds=30
 timeToLiveSeconds=5

Application.cfc

<cfcomponent>
 <cfscript>
 this.name = "appSpecificCacheTest";
 this.cache.configfile = "redisconfig.properties";
 this.cache.engine = "redis";
 this.applicationTimeout = createtimespan(0,0,0,5);
 </cfscript>
</cfcomponent>

redisconfig.properties

 maxElementsInMemory=5
 eternal=false
 timeToIdleSeconds=30
 timeToLiveSeconds=5

cache.cfm

<cfscript>
 writeoutput(cachegetengineproperties().name); // Returns the name of the cache
engine
</cfscript>

Custom cache plugin
Apart from using Memcached, Redis, or JCS, you can implement your custom cache plugin. We have
provided an interface (C:\ColdFusion2018\cfusion\wwwroot\CFIDE\cache\ ICustomCache.cfc), through
which you can implement a custom caching engine.

Place your implementations in the same folder as ICustomCache.cfc.

ColdFusion takes advantage of Infinispan libraries. Download the files from the stable release,

• infinispan-embedded-query-9.1.3.Final.jar
• infinispan-embedded-9.1.3.Final.jar

in the location C:\ColdFusion2018\cfusion\lib and restart ColdFusion.

To add a custom plugin:

1. Create a folder in C:\ColdFusion2018\cfusion\wwwroot\CFIDE\cache. The name of the folder is the
name of the custom plugin engine.

2. Create <any CFC name>.cfc that implements ICustomCache.cfc and write the implementations.
For example,

< <cfcomponent implements="CFIDE.cache.ICustomCache">
 <cffunction name="put" >
 <cfargument name="obj" type="struct">
 <cfoutput>"inside put"</cfoutput>
 <cfset defaultCache=Application.defaultCacheManager.getcache()>
 <cfset defaultCache.put(obj.id,#obj.value#)>
 </cffunction>
</cfcomponent>

3. Create config.xml that contains references to Infinispan libraries.

<infinispan>
 <cache-container default-cache="local">
 <local-cache name="local"/>
 </cache-container>
</infinispan>

4. Create Application.cfc

<cfcomponent>
<cfset this.name= "xyz">
 <cfscript>

 function onApplicationStart()
 {

 writelog("In onApplicationStart()");
 Application.defaultCacheManager=
CreateObject("java","org.infinispan.manager.DefaultCacheManager").init('C:\ColdFusion2018\cfusion\
wwwroot\custom_cache\config.xml');
 writelog("In onApplicationStart()");
 }

 function onApplicationEnd(){
 writelog("In onApplicationEnd()");
 }
 </cfscript>
</cfcomponent>

Create an app with the following:

Application.cfc

<cfcomponent>
<cfscript>
 this.name = "mycache_app";
 this.cache.engine = "<folder name>";
</cfscript>
</cfcomponent>

Cache.cfm

<cfscript>
 writeoutput(cachegetengineproperties().name); // Returns the name of the cache
engine

</cfscript>

New function- getCacheServerSettings
We have introduced a new ColdFusion function for distributed caching that returns the server level
properties for the redis and memcached caching engines. For example,

<cfscript>
 logInAPIObj = createObject("component","cfide.adminapi.administrator");
 logInAPIObj.login("password");
 rtAdminObj = createObject("component", "CFIDE.adminapi.runtime");
 memcachedSettings = rtAdminObj.getCacheServerSettings('memcached');
 redisSettings = rtAdminObj.getCacheServerSettings('redis');
 writeDump(redisSettings);
 writeDump(memcachedSettings);
</cfscript>

Hibernate upgrade
This version of ColdFusion uses Hibernate 5.2. The following are the highlights:

• Hibernate 5 XML Parser now uses JAXP (Java API for XML Processing). As a result, the way of declaring
the class name in hbmxml ORM mapping file has changed, for example,
cfc:cfsuite.orm.settings.dialect.invalid_dialect.invalid_dialect to
cfc.cfsuite.orm.settings.dialect.invalid_dialect.invalid_dialect.

• Hibernate 5 no longer supports seqhilo generator.

• Hibernate 5 no longer supports offset queryoptions as it was inefficient and most of the underlying
databases have the support for offset. However, this functionality can be enabled by setting the flag
hibernate.legacy_limit_handler to true in the hibernate configuration file.

• Hibernate 5 Schema Update/Export validates the case sensitivity in table names. If the table name
defined in CFC and database are in different cases, it does not work. The previous version of Hibernate
allowed tables names defined in CFC and database to be case-insensitive.

Changes to wsconfig tool
In the wsconfig tool, we have added new configuration settings related to tuning of connectors.

The options are:

1. Heartbeat Interval in seconds: The time interval in seconds after which the connector load data is
sent to ColdFusion.

2. Heartbeat Limit in percentage: The upper limit of load percentage at which the connector load
data is immediately sent to ColdFusion.

New Admin APIs
In this release, we have also added the following ColdFusion Admin APIs related to caching. The APIs are
a part of runtime.cfc.

1. verifyRedisCacheStorageConnection

Description: Verifies connection to the Redis cache storage.

Syntax: void verifyRedisCacheStorageConnection (sessionStorageHost,
numeric sessionStoragePort, sessionStoragePassword)

Parameter Req/Opt Default Description
sessionStorageHost Optional Any The hostname for

Redis cache storage.
sessionStoragePort Optional Numeric The port number for

Redis cache storage.
sessionStoragePassword Optional Any The password for the

Redis cache storage.

2. setServerCachingEngine

Description: Changes the caching engine at the server level.

Syntax: void setServerCachingEngine (required engine)

Parameter Req/Opt Default Description
engine Required Any 1. Ehcache

2. JCS
3. Memcached
4. Redis

3. setJCSClusterDsnName

Description: Set the data source for JCS cluster.

Syntax: void setJCSClusterDsnName (required dsn, required boolean
createTables)

Parameter Req/Opt Default Description
dsn Required Any Name of the data

source.
createTables Required Any Whether to create a

table.

4. setCachingRedisServer

Description: Set the caching engine for Redis.

Syntax: void setCachingRedisServer (required host, required port,
required password, required boolean cluster)

Parameter Req/Opt Default Description
host Required any Host address of the

server.
port Required any Port number of the

server.
password Required any Password of the

server.
cluster Required Boolean Whether a cluster is

enabled in Redis.

5. getMemcachedServer

Description: Gets the details of the Memcached caching engine.

Syntax: any getMemcachedServer ()

ColdFusion Builder updates
• ColdFusion Builder now uses significantly less memory footprint when compared to earlier

versions. It now consumes at least 100-150 MB less memory.
• ColdFusion Builder now contains support for language changes, such as, abstract and final keyword,

and optional semicolon.

In this release, we have upgraded Eclipse from Mars to Oxygen. If you want to use ColdFusion Builder as a
plugin to Eclipse, use Eclipse version 4.7.2 or higher.

We have also added support for the following language constructs:

• Query functions – QueryDeleteRow, QueryDeleteColumn
• Array functions - ArrayFirst , ArrayLast
• Abstract component and abstract functions
• Final methods, components, and variables
• Typed collections

	ColdFusion Administrator has a new User Interface
	Performance Monitoring Toolset
	Language enhancements
	NULL support
	Closures in ColdFusion tags
	Asynchronous programming
	Executor Pool Configuration

	Data type preservation
	Object Oriented Programming enhancements
	Abstract components and methods
	Final component, method, and variable
	Default functions in interfaces
	Covariance

	Optional semicolon in cfscript
	Named parameters
	Array slicing
	Member functions
	String literals
	Numeric member functions

	Typed collections
	New operator support using name-spaces for java, com and cfc
	Chaining of member functions
	Simplified date format functions
	ArrayFirst and ArrayLast functions
	ArrayFirst
	ArrayLast

	Negative Indices support for Arrays
	QueryDeleteColumn
	QueryDeleteRow

	CLI- REPL
	Getting started with REPL
	Support for Admin APIs
	A CLI instance and the server share the same configuration files. Any admin settings changed from the CLI are reflected in CLI immediately. The changes are also applied to the server. However, to reflect the changes in the ColdFusion Administrator Pag...
	REPL is more enhanced
	Support for multi-line statements
	Set Working directory

	REST enhancements
	Enabling Developer Profile option
	Introducing REST Playground application
	Auto refresh of REST CFCs
	Adding an application in REST Playground
	Example: GET
	Example: POST
	Language changes

	Easy debugging and logging
	Support for PATCH verb
	JSON Field Projection
	Auto registering REST applications

	Caching enhancements
	Changes in the Administrator settings
	Memcached
	JCS
	Auxiliary cache support in JCS
	Redis
	Custom cache plugin
	New function- getCacheServerSettings

	Hibernate upgrade
	Changes to wsconfig tool
	New Admin APIs
	ColdFusion Builder updates

